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Abstract
We review electrical pulse experiments carried out to probe inelastic energy
relaxation processes and related non-equilibrium transport characteristics of
quantum dots (QDs) in the Coulomb blockade (CB) regime. In contrast to the
relatively short momentum relaxation time (∼10 ns) that can be understood on
the basis of acoustic phonon emission, the spin-flip relaxation time is found to be
extremely long (∼200 µs). The spin relaxation process in our QDs is actually
dominated by a cotunnelling process, and thus the intrinsic spin relaxation
should have a longer relaxation time. The long relaxation time is discussed
in terms of potential applications to spin-based quantum information storage.
On the other hand, the extremely long spin relaxation process can induce
considerable fluctuation of the spin, charge, and total energy of the QD. The
absence of efficient spin relaxation processes can cause highly non-equilibrium
transport, which actually ‘breaks down’ the single-electron tunnelling scheme.
The non-equilibrium effects must be considered when electrons and spins are
manipulated in the CB regime.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Electron spins in semiconductors have attracted much attention in spin-based electronics, in
which the spin degree of freedom can be utilized for future electronic devices, as well as
spin-based quantum information processing, which is expected to provide a powerful quantum
computing scheme [1, 2]. A quantum dot (QD), which accommodates a tunable number of
electrons, shows many spin dependent phenomena [3]. Coulomb and exchange interactions
between electrons inside QDs induce spin-polarized states [4–6]. Strong tunnel coupling with
electrodes screens localized spins in a QD, and this gives rise to Kondo resonant tunnelling
current in the Coulomb blockade (CB) regime [7]. The dynamical characteristics of spin states
in QDs are of growing interest for developing spin-based information processing. Dissipation
and decoherence are fundamental aspects of quantum dynamics. QDs are expected to provide
long dissipation and decoherence time due to the localized nature of the electronic states [8].
However, electron spin in a realistic QD has an unavoidable coupling to the nuclear spin
(hyperfine coupling), the orbital degree of freedom of the electron (spin–orbit coupling), the
lattice vibration mode (spin–phonon coupling), the electromagnetic field (dipole magnetic
coupling), etc [8, 9]. In addition, a practical QD may suffer from extrinsic effects, such as
coupling to conduction electrons in the vicinity of the QD, extra spin–orbit coupling due to
the heterostructure interface or impurities, and the influence from fluctuations of the electric
or magnetic field. Consequently, it is important to know how long spin information can be
preserved in practical QDs.

Spin relaxation in QDs has been studied mainly by optical orientation techniques, in
which spin-polarized electrons, consistent with the optical selection rules, are excited between
the valence band and the conduction band in III–V semiconductors [10–12]. However, this
scheme is complicated by the generation of holes in the valence band, which can give rise
to unwanted processes. Alternative techniques based on electrical measurements in the CB
regime have successfully proved inelastic spin relaxation, and this is reviewed in our article.
First, we introduce electrical pulse measurements to investigate the energy relaxation in a QD
in the CB regime. Next, we discuss the momentum and spin relaxation processes observed
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Figure 1. Schematic energy diagrams of the dc transport (a) in forward bias and (b) in reverse bias.
The GS, g, and first ES, e1, are in the transport window. Thick (thin) arrows indicate tunnelling
transitions with higher (lower) rates. Energy relaxation from e1 to g is considered.

in one- and two-electron QDs. Spin conservation during the relaxation processes is clearly
observed. The transition is allowed for by a simple phonon emission process, but is strongly
forbidden if the spin is changed. Lastly, highly non-equilibrium transport in the absence of an
efficient spin relaxation process is described. Excess energy accumulated in long-lived spin
states can ‘break down’ the widely accepted single-electron tunnelling (SET) scheme. The
spin blockade effect and associated non-equilibrium transport are also discussed.

2. Electrical measurements carried out to determine energy relaxation time

We first describe the electrical measurements used to determine tunnelling rates through
barriers as well as the rate of energy relaxation from an excited state (ES) to a ground state
(GS) in a QD. We consider a general QD in the CB regime where the number of electrons in
the QD is a fixed integer, N [13]. When a gate voltage is instantly changed to force the QD
from one CB region at N = N0 (N0 +1) to another at N = N0 +1 (N0), one electron is injected
into (extracted from) the QD. Injection and extraction can be performed on a timescale given
approximately by the inverse of the barrier tunnelling rates, �−1, which can be varied over a
wide range from ∼1 ps to ∼1 µs for typical QDs. Moreover, an electron can be (sometimes
selectively) injected into, or extracted from, the GS or ESs by adjusting external voltages.
Repeatedly applying voltage pulses pushes the system out of equilibrium, and by measuring
the time-integrated non-equilibrium transient current we can determine the energy relaxation
time or the tunnelling rates.

2.1. The dc measurement

We now discuss to what degree conventional dc measurements can shed light on
relaxation/tunnelling dynamics. We consider a simple situation where the GS, g, and the
first ES, e1, are in the transport window between the left- and right-lead chemical potentials
(µL and µR), and consider the energy relaxation process, whose rate is W , from the ES to
the GS (figures 1(a) and (b)). Each state (i = g, e1) is coupled to the left and right lead
with tunnelling rates �L,i and �R,i , respectively. We consider strongly asymmetric barriers,
�L,i � �R,i , and define the forward bias direction as that where an electron is injected from the
thinner barrier (�L,i ) and ejected through the thick barrier (�R,i ), throughout this article. As
shown below, current in forward (reverse) bias is sensitive (insensitive) to the relaxation rate.

The current through the dot can be simply estimated from the rate equations considering all
the processes described by the arrows in figures 1(a) and (b). At sufficiently low temperature
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and relatively high source–drain voltage, an electron sequentially travels through the states
from the left electrode to the right electrode, while the backward travelling from the right to
the left is suppressed. Thus, as long as the states of interest are in the transport window, the
current is insensitive to the energies and the applied source–drain voltage if we assume energy
independent tunnelling rates. This saturated current yields

If = e�R,g(�L,g + �L,e1)(�R,e1 + W )

�L,g(�R,e1 + W ) + �L,e1(�R,g + W )
(1)

for forward bias, and

Ir = e(�R,g + �R,e1) (2)

for reverse bias [14]. The reverse bias current, Ir , is independent of W , since it is determined
by the incoming tunnelling rates alone. Generally, Ir is given by the rate �R,i of tunnelling
through the thick barrier to the i th empty state located in the transport window; Ir = e

∑
�R,i .

Thus Ir increases stepwise when an empty state enters the transport window. All the energy
states and corresponding tunnelling rates can be measured in this way, unless the coupling to
the leads �R,i is too weak.

In contrast, the current for forward bias (equation (1)) depends on W , since it is determined
by the outgoing rates of tunnelling from QD states whose populations are affected by the
relaxation. In the limit of fast relaxation, W � �R,i , the current becomes

If = e�R,g, (3)

which is identical to the current through just the GS. In the opposite limit of slow relaxation,
W � �R,i ,

If = e�R,g�R,e1(�L,g + �L,e1)

�L,g�R,e1 + �L,e1�R,g
, (4)

which is different from equation (3) if �R,g �= �R,e1 . Therefore, a current step appears at
µL = Ee1 only when the relaxation rate is not much larger than the tunnelling rate. If
more than two ESs are in the transport window, a similar argument can be constructed by
considering W to be the sum of all the relaxation processes from the ESs to any lower-lying
energy states [14, 15]. However, equation (1) is too complicated to use to estimate W from
the dc characteristics alone.

2.2. Single-step pulse measurement

Next, we consider the case where a rectangular-shaped voltage pulse is applied to a gate
electrode, as schematically shown in figures 2(a) and (b) [14]. The gate voltage, Vg(t), is
switching instantaneously between the low-voltage state, Vl, and the high-voltage state, Vh.
As in the case for the dc measurement scheme, we consider strongly asymmetric tunnelling
barriers (�L � �R) and energy relaxation from the first ES to the GS. The polarity of the bias
voltage is chosen such that an electron is injected through the thinner barrier at a fast rate �L,
and an electron is ejected through the thicker barrier at a slow rate �R (forward bias).

First, we prepare the QD in the (N0 −1)-electron GS by setting the gate voltage to Vg = Vl

in the N0 − 1 CB region for a sufficiently long period of time, tl � �−1
L (figure 2(c)). In this

situation, both the N0-electron ES and the GS are energetically located above the chemical
potential of the two electrodes, µL and µR. Then, the gate voltage is suddenly switched
to Vg = Vh in the N0-electron CB region. The rise time of the voltage pulse should be
comparable to or shorter than �−1

L to see the following effects. The high voltage Vg = Vh

is adjusted such that only the N0-electron ES is located between µL and µR (the transport
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Figure 2. (a) A schematic diagram of the pulse measurement set-up. (b) The pulse waveform for
the single-step pulse measurement. (c), (d) Schematic energy diagrams for the low-voltage and the
high-voltage states respectively.

window), as shown in figure 2(d). First an electron enters either the N0-electron ES or the GS
with probabilities �L,e and �L,g + �R,g, respectively, but only one electron can enter the dot at
a time. If an electron enters the ES, it can relax to the GS, or tunnel to the right electrode to
give a net current. However, the transport is blocked once the GS is occupied (CB). Because
of the strongly asymmetric barriers, �L � �R, an electron can stay in the ES for a relatively
long time, ∼�−1

R , during which relaxation may take place. The transport through the ES is
terminated by a relaxation process. Therefore, transport in the forward bias is sensitive to the
relaxation time.

This transient transport scheme can be considered to be a kind of pump and probe
measurement. An electron is pumped into the ES within �−1

L after a rising edge of the pulse,
and then the electron in the ES is probed via the slower tunnelling rate �−1

R in the high-voltage
state. Note that a relatively large source–drain voltage, |Vsd| � h̄�L, has to be applied in order
to eliminate backward tunnelling processes, such as tunnelling from the N0-electron ES back
to the left source electrode, which can degrade the relaxation time measurement.

To clarify this scheme, we analyse this non-equilibrium transport by using simple rate
equations [16]. The non-equilibrium transport in the high-voltage state is described by

d

dt
ρe = �L,e(1 − ρe − ρg)− �R,eρe − Wρe,

d

dt
ρg = (�L,g + �R,g)(1 − ρe − ρg) + Wρe,

(5)

in which all the tunnelling processes shown by arrows in figure 2(d) are taken into account.
Here, ρe and ρg are the average electron numbers in the ES and the GS, respectively.
ρe = ρg = 0 at t = 0, and 0 � ρe + ρg � 1 is satisfied due to CB. The average number, 〈nh〉,
of tunnelling electrons that have passed through the QD during the high-voltage state is given
by

〈nh〉 =
∫ th

t=0
[�R,eρe − �R,g(1 − ρe − ρg)] dt . (6)
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Figure 3. (a) The average number of tunnelling electrons, 〈n(th)〉, calculated for the single-step
pulse scheme. Each curve is approximated by a single-exponential curve, whose parameters nmax
and D are plotted in (b) and (c) respectively.

The first term of the integrand describes the probing current from the ES to the right lead. The
second term is back transport from the drain to the GS, and gives a minor correction in the
forward bias condition. At the end of the high-voltage pulse at t = th, an electron can remain
in the ES and GS with the probabilities ρe(th) and ρg(th), respectively. When the gate voltage
is switched back to Vl, the residual transport is described by the rate equations

d

dt
ρe = −(�L,e + �R,e + W )ρe,

d

dt
ρg = −(�L,g + �R,g)ρg + Wρe,

(7)

with the initial conditions ρe(th) and ρg(th). The average number of tunnelling electrons, 〈nl〉,
in a sufficiently long period of the low-voltage state, tl (this can be replaced by infinity in the
condition assumed), is given by

〈nl〉 =
∫ ∞

t=th

[�R,eρe + �R,gρg] dt . (8)

Therefore, the total number of tunnelling electrons per pulse is obtained from

〈n(th)〉 = 〈nh〉 + 〈nl〉. (9)

Although the analytical expression for equation (9) contains different exponential terms,
all curves can be approximated well by a single-exponential curve in the time domain of interest.
Figure 3(a) shows the variation of 〈n(th)〉 for various relaxation rates, W = 103–107 Hz, under
the conditions �L,e = �L,g = 109 Hz and �R,e = �R,g = 106 Hz. We made numerical
calculations for equation (9), and approximated it as a single-exponential function:

〈n(th)〉 � nmax[1 − exp(−Dth)]. (10)

Here, nmax is the maximum number of tunnelling electrons that can be obtained with a
sufficiently long th, and D is the decay rate that describes the transient transport. D is
determined so as to satisfy 〈n(1/D)〉 = nmax(1 − 1/e). nmax and D are plotted as solid
curves in figures 3(b) and (c) respectively for forward bias.

Similar calculations were done for the reverse bias condition, where an electron is injected
from the thicker barrier with the slow rate �R and is ejected from the thinner barrier with the
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fast rate �L (dashed lines in figures 3(b) and (c)). In this case, an electron easily enters the GS,
and immediately ceases showing transient transport.

As clearly seen from the figures, D and nmax for reverse bias are independent of W , while
those for forward bias depend strongly on W . Therefore, one can determine the tunnelling
rates from the reverse bias condition. D for reverse bias, Drev, gives the total tunnelling rate
Drev ∼ �tot,g = �L,g + �R,g ∼ �L,g. Small nmax,rev reflects the asymmetry of the tunnelling
rates, ∼�R/�L. Combining this with the conventional dc tunnelling current, e�R,g, through
just the GS,�L,e and�R,e can be estimated separately. It should be noted for the later discussion
that the total incoming rate, from both barriers, governs Drev.

In contrast, Dfor for forward bias can vary from �R to �L, and nmax,for can vary from ∼1
to �R/�L depending on W . Therefore, the decay rate D in forward bias gives the relaxation
rate W , provided that

�L � W � �R. (11)

This condition can also be realized experimentally if nmax,for for forward bias is smaller than
∼1 but larger than nmax,rev, or if Dfor is smaller than Drev but larger than �R.

Another useful measurement for determining the tunnelling rates can be performed by
changing tl with a sufficiently long th. The bias polarity can be either forward or reverse in
principle, but forward bias is preferred for a higher current. Under the condition th � �−1

R at
Vg = Vh, the QD ends up in the N0-electron GS after the pulse, i.e., ρe(th) = 0 and ρg(th) = 1.
During the next low-voltage pulse, an electron in the GS leaves the QD at a rate given by
�tot,g = �L,g + �R,g. Since this extraction is required to see the transient current, the average
number of tunnelling electrons is simply given by

〈n(tl)〉 = nmax[1 − exp(−�tot,gtl)], (12)

and �tot,g can be obtained from the dependence on tl. In this scheme, the total outgoing rate
from both barriers is important.

The incoming and outgoing rates should be identical in general for tunnelling transitions
between single states, but may be different if the states are degenerate. For all of the
measurements presented in this article, Zeeman splitting is unresolved, and spin degeneracy
effectively remains even in a magnetic field (B < 10 T). In this case, there are multiple
tunnelling paths from the (N0−1)-electron state to N0-electron state. For a tunnelling transition
between a state with total spin S0 and another state with spin S1, the ratio of incoming and
outgoing rates is given by (2S0 + 1)/(2S1 + 1), which should be between 0.5 and 2 since
S1 = S0 ± 1/2 [17]. This multi-level effect is not taken into account in the above discussions
and following analysis. Although we do find that the incoming rate and the outgoing rate
are different, we could not separate this effect from other effects, such as voltage dependent
tunnelling rates [18].

2.3. Double-step pulse measurement

An improved method for determining the longer relaxation time, i.e., W < �R,e, involves the
application of a double-step voltage pulse, in which Vg is switched between three voltages,
Vl, Vh, and Vm, as shown in figure 4(a) [16]. As compared to the single-step pulse scheme,
pumping and probing sequences are now clearly separated in this scheme. Initially, when
Vg = Vl (figure 4(b)), empty N0 states are prepared during a sufficiently long period of time,
tl. When Vg is suddenly increased to Vh (figure 4(c)) such that both the N0-electron ES and GS
are located below the chemical potentials, an electron enters either the ES or the GS. Once an
electron enters either of these two states, it cannot leave the dot, and nor can another electron
enter it (CB). Effectively the QD is now isolated from the electrodes. If an electron has entered
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Figure 4. (a) The schematic pulse waveform for the double-step pulse measurement. (b), (c), (d)
Schematic energy diagrams for the low-, high-, and medium-voltage states respectively.

the ES, the ES may relax to the GS in this high-gate-voltage state. Therefore, the average
electron number in the ES after period th is approximately given by

ρe,h = A exp(−Wth)

for th � �−1
L , where A � �L,e

�L,e+�L,g
. When Vg is switched to Vm (figure 4(d)), an electron in the

ES can tunnel out to the drain, if the ES has not yet relaxed to the GS. This tunnelling process
can be described by equation (5) with the initial conditions ρe = ρe,h and ρg = 1 −ρe,h. After
a sufficiently long time, tm � �−1

R,e, for complete read-out, the average number of tunnelling
electrons, 〈n〉, can be written as

〈n(th)〉 = A′ exp(−Wth), (13)

where A′ = �R,e/�R,g. Therefore, the relaxation rate can be obtained from 〈n(th)〉. In this
scheme, an electron can be pumped into the ES on the rising edge of the pulse to Vh, and then
this electron can be probed while the voltage is intermediate, Vm. The N0-electron QD may
experience relaxation between the pumping and probing sequences.

We also solved a series of rate equations that describe the transport for each voltage period,
and numerically obtained 〈n(th)〉. Figure 5(a) shows a simulation of 〈n(th)〉 for the double-
step pulse measurement with �L,e = �L,g = 109 Hz and �R,e = �R,g = 106 Hz. 〈n(th)〉 can
be approximated by a simple exponential curve 〈n(th)〉 = nmaxe−Dth , whose parameters nmax

and D are plotted in figures 5(b) and (c). Although the signal amplitude nmax is different for
a different bias polarity, the decay rate D is the same for both polarities. As clearly seen in
figure 5(c), D directly gives the relaxation rate W over a wide range for the condition W � �L.

3. Transient current spectroscopy

In this section, we describe the experimental procedure for single-pulse measurements and
compare them with conventional dc measurements. This technique provides a spectroscopic
tool which is selective as regards the relaxation time.
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Figure 6. (a) The schematic measurement set-up for a lateral QD whose SEM image is shown.
(b) The typical pulse waveform reflected back from the sample.

3.1. Lateral quantum dot

The lateral QD studied here is fabricated from an AlGaAs/GaAs modulation doped
heterostructure by using focused ion beam implantation (dark horizontal lines) and Schottky
gates (bright vertical lines separated by 220 nm) in the SEM (scanning electron micrograph)
picture in figure 6(a). We performed all the measurements at a temperature of 150 mK and in
a magnetic field applied perpendicular to the substrate [19]. The QD contains about N ∼ 50
electrons. The charging energy is about 2 meV and the single-particle energy spacing is
∼100–300 µeV. We tune the two gate voltages, VL and VR, such that the rate of tunnelling
through the left barrier, �L, is much larger than that through the right barrier, �R. Figure 7(a)
shows the typical current through the dot at various source–drain bias voltages Vb. For negative
Vb (reverse bias as defined in section 2), the current increases stepwise when a discrete state
with energy Ei enters the transport window (between the left and right chemical potential, µL

and µR, respectively). Eg, Ee1 , and Ee2 are the energies of the GS, g, the first ES, e1, and the
second ES, e2, respectively. On the other hand, for positive Vb (forward bias), current steps
appear only for specific ESs; a step is seen at µL = Ee1 but apparently not at µL = Ee2 in



R1404 Topical Review

150

100

50

0

-50

-100

-815 -810 -800 -795-805

C
ur

re
nt

 (
pA

)

VR (mV)

Eg

Vb

Ee1
Ee2

µR =

(mV)
Ee1µL =

Eg

B = 1.0 T

(a)

 

10

5

0

-810 -800-805
VR (mV)

C
ur

re
nt

 (
pA

)

w/o pulse

pulse 20/100 ns

g e1 B =
1.0T

10
9
8
7
6
5
4
3

Vp 
(mV)

Vb= 0.1 mV
(b)

+1.5

~0

-1.5

Figure 7. (a) The dc spectrum for forward (upper traces) and reverse (lower traces) bias. Each
trace is offset for clarity. (b) The pulse excited current spectrum for forward bias condition
(Vb = 0.1 mV).

figure 7(a). According to the discussion in section 2.1, this implies that the first ES must have
a long relaxation time, while the second ES relaxes to the first ES or GS quickly.

For the pulse measurements, we apply a rectangular pulse to the right gate of the sample
to modulate the potential of the QD (figure 6(a)). In this case the pulse also changes the
tunnelling rate (�R), and gives rise to excess pumping current. This excess current is smaller
than 10% of the signal current in the following experiments, and can be neglected. The pulse
signal is combined with the dc gate voltage via a dc block (a pass band of 700 Hz–26 GHz for
the pulse), and the combined signal is fed through a low-loss coaxial cable, which consists of
a silver-plated stainless-steel cable from 300 to 4 K, a superconducting niobium cable from
4 K to ∼150 mK (the mixing chamber), and a copper cable from the mixing chamber to the
sample. There are no attenuators and no termination in the cryostat. The pulse introduced from
the 300 K port is transmitted to the sample, and is then reflected back to the 300 K port. The
reflected pulse is monitored during the measurement by an oscilloscope. A typical reflected
pulse is shown in figure 6(b). This pulse is distorted by the forward and back transmission
through the cables, but it is more or less the actual pulse waveform at the gate electrode. The rise
time (about 0.2 ns in this case) of the pulse is shorter than �−1

L,g (about 1 ns). The rectangular
waveform contains a small ringing structure and fluctuations (<10% of the pulse height in the
experiment), which slightly broadens the current peak and degrades the energy selectivity.

In practice, we always sweep the dc gate voltage VR and keep the pulse height constant;
i.e., Vh and Vl are swept simultaneously. Figure 7(b) shows the pulse excited current measured
at a small forward bias voltage (Vb = 0.1 mV). The application of the pulse signal splits the
purely dc peak into two peaks. These correspond to the tunnelling through the GS in the
high-voltage state (labelled g in the figure) and the low-voltage state (the rightmost peak). An
extra peak (labelled e1), which is the transient current through the first ES, appears between the
two split peaks. This peak appears only when the first ES is located in the transport window
in the low-voltage state. The peak spacing between g and e1 is independent of the pulse
amplitude, and the corresponding energy spacing agrees well with that obtained from normal
dc measurements.

We investigate these current peaks as a function of the high-voltage pulse length, th. We
can obtain the average number of tunnelling electrons per pulse, 〈ng〉, for the stable current
through the GS, and 〈ne〉 for the transient current through the first ES from the I (th + tl)/e value
for each peak current, I . Figures 8(a) and (b) show 〈ng〉 and 〈ne〉 measured at slightly different
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Figure 8. The average number of tunnelling electrons, 〈ng〉 for the stable SET current through
the GS and 〈ne〉 for transient current through a first ES measured (a) at B = 1.19 T and (b) at
B = 1.35 T.

magnetic fields (B = 1.19 T for (a) and 1.35 T for (b)). From the B dependence of the excitation
spectrum (described below), the ESs show complicated crossing and anti-crossing behaviour
at around B = 1.3 T, while the characteristic of the GS is unchanged for B = 1.1–1.5 T. The
transient currents observed in figures 8(a) and (b) originate from ESs with different quantum
numbers. For both cases, 〈ng〉 depends linearly on th, indicating a continuous current flow. The
slopes of these traces, d〈ng〉/dth = �R,g ∼ (300 ns)−1, are almost the same for the two cases.
For the transient current, 〈ne〉 shows saturation behaviour, which appears at very different pulse
lengths, th. From fitting with a single-exponential function, ∼(1 − e−Dth), we obtain the decay
time D−1 = 2.1 µs for B = 1.35 T. A clear exponential curve is not obtained for B = 1.19 T,
but the saturated value of 〈ne〉 for th = 10–20 ns indicates D−1 � 2 ns.

In order to obtain the relaxation rate W from D, the condition given by equation (11) has to
be confirmed. However, the condition is not safely satisfied for all the measurements performed
on this sample. For B = 1.35 T, D = (2.1 µs)−1 = 0.5 MHz is smaller than �R,e ∼ 4.2 MHz,
implying that D is not determined by W but instead probably by the tunnelling rates. We can
only say that the relaxation time is comparable to or longer than 2 µs for this case. As for
B = 1.19 T, D � (2 ns)−1 = 0.5 GHz is close to the other tunnelling rate �L ∼ 1 GHz. Thus
the relaxation time is comparable to or shorter than 2 ns for this particular case.

The significant difference (more than three orders of magnitudes) between the relaxation
times can be qualitatively understood in terms of spin conservation during relaxation. If the
ES and GS have the same spin, the ES quickly relaxes to the GS as a result of fast electron–
phonon interaction (typically about τe−ph ∼ 1 ns) [20]. In contrast, if the ES and GS have
different spins, the relaxation time is limited by spin-flip processes. Most of the spin relaxation
mechanisms discussed for 3D or 2D electrons in GaAs are suppressed for the 0D states of QDs.
We expect an extremely long spin relaxation time (τspin > 10 µs) due to the small spin–orbit
interaction [21]. This is beyond the experimental limit (a few microseconds) of our single-
pulse scheme. Therefore, the long-lived ES can have a different spin from the GS. In our
experiment, the Zeeman splitting is unresolved. Thus the difference in total spin is responsible
for the long energy relaxation time, and for the appearance of the transient current.

The relaxation time cannot be determined in practice, yet the single-pulse excitation
scheme is useful to analyse the spin states in a spectroscopic way. On application of a square
pulse (th = tl), the amplitude of the net transient current, Ie, is approximately given by

Ie = 〈ne〉e/(th + tl) ∼ 1
2 eA�R,e/Dth(1 − e−Dth ). (14)

The transient current Ie for the two cases of B = 1.19 and 1.35 T can be well fitted with
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equation (14), as shown in figure 9. With an appropriate value of th close to �−1
R , the transient

current appears only for an ES whose total spin is different from those of all lower-lying states.
This technique is useful for spectroscopic studies in a magnetic field.

The magnetic field dependences of the conventional dc and the pulse excited transient
current are compared for two consecutive SET current stripes, n0 and n0 + 1, in figure 10. In
the derivative of the conventional dc, d I/dVR, for reverse bias Vb = −1 mV (figure 10(a)),
a peak appears when any ground or ES enters the transport window. The peak positions are
shown by solid curves in (d). The orbital characteristics of the states are reflected by the
dependences of B on the position (energy) and the current amplitude of the peaks [3]. The
complicated B dependence is a result of crossing or anti-crossing between different energy
states in the dot.

In contrast, only long-lived ESs and GSs should appear in the pulse excited current spec-
trum measured with Vp = 10 mV: th = 20 ns and tl = 80 ns (figure 10(c)). This spectrum
is qualitatively identical to the dc spectrum in forward bias (figure 10(b)), although the pulse
excited current is somewhat broadened because of the pulse waveform. The pulse length
dependence on the transient current indicates that all the peaks which appear in (c) have a
relaxation time longer than the corresponding tunnelling time. These long-lived ESs are also
marked by hatches in (d). Other short-lived ESs are not present in figures 10(b) and (c).

Between 1 and 2 T, where edge states are developing, some states (peaks α, β, and γ for
the n0 stripe, and β ′, γ ′ and δ′ for the n0 + 1 stripe) decrease energetically with increasing B .
They can be assigned to states in the lowest Landau level with different angular momentum.
Some of the ESs (β and γ ′) have an extremely long relaxation time, even though these states
are spatially overlapped with the GS. A long relaxation time has been reported when the states
are spatially separated or the two states are attributed to different edge states [22, 23], but this
is not the case here.

Some ESs (e.g., the first ES peak ξ of the n0 stripe between 0.2 and 0.6 T) are parallel to
the GS (peak ζ ). The parallel GS and ES in the pair are likely to have the same orbital character
but a different spin configuration due to exchange interactions. These parallel pairs actually
appear in the pulse excited current demonstrating that the relaxation between the states is long.
This behaviour supports our spin conservation model in the relaxation process.

However, there are some features that we still do not understand [14]. For instance, peak
β (see figure 10(d)) appears as a long-lived ES only for B > 1.25 T. Peak β appears to cross
(or anti-cross) with peak ε. Note that the transient currents in figures 8 and 9 are taken for peak
ε (W−1 � 2 ns) at B = 1.19 T and peak β (W−1 � 2 µs) at B = 1.35 T. We would expect a
long-lived ES on both sides of the crossing. The signal from the long-lived state might be too
small to see for B < 1.25 T. Further measurements are required to clarify this point.
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Figure 10. (a) and (b) Greyscale (colour in the electronic journal) plots of dI/dVR from a dc
transport measurement (a) for negative bias (Vb = −1 mV) and (b) for positive bias (Vb = 1 mV).
(c) A greyscale (colour in the electronic journal) plot of the pulse excited current I measured at
Vb = −0.1 mV and Vp ∼ 10 mV. (d) Traces of the GS and ESs extracted from (a) to (c).

3.2. Few-electron vertical quantum dot

We also performed transient current spectroscopy on a vertical QD (artificial atom), in which
the total number of electrons, N , and total spin, S, are well defined [4, 5, 24]. The QD is
located in a circular pillar of diameter 0.5 µm fabricated from an AlGaAs/InGaAs resonant
tunnelling heterostructure (see figures 11(a) and (b)). The QD is weakly coupled to the top
and bottom electrodes via asymmetric Al0.28Ga0.72As barriers (the corresponding tunnelling
rate �−1

t ∼ 100 ns for the 8.5 nm top barrier and �−1
b ∼ 3 ns for the 7 nm bottom barrier).

Electrons are confined in an In0.05Ga0.95As quantum well (thickness a = 12 nm) in the vertical
(z) direction, and by an approximate two-dimensional harmonic potential in lateral (x and
y) directions appropriate for small N . The first few electrons occupy the 1s and 2p orbitals
associated with the lateral confinement (figure 11(c)). The N dependent addition energy,
Ea = 2–5 meV, clearly reveals a shell structure for sequential electron filling just as for normal
atoms. Thus, this QD is often referred to as an artificial atom. Interacting electrons inside the
dot form many-body states. These states are well characterized by the total spin, S, and total
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Figure 11. (a) A schematic diagram of a vertical QD with pulse measurement set-up. (b) A SEM
image of a control device. (c) A schematic confinement potential of the QD.

angular momentum, M . These quantum numbers can be identified from the magnetic field
(applied parallel to the current), B , dependence of the SET current spectrum. Zeeman splitting
is not resolved in this measurement so we neglected it. The active region of the QD contains
5% of InAs, but we regard the dot matrix as being GaAs in the following analysis.

Figure 12(a) is the conventional dc spectrum (the grey (colour) represents the amplitude
of |d I/dVg|) obtained with a reverse bias voltage Vb = −1.5 mV. The positive peak positions
within the first three stripes are traced in figure 12(c). We can identify the quantum numbers
(N, S,M) of these states by comparison with an exact diagonalization calculation [25]. Inside
the second stripe (n = 2), the (N = 2)-electron energy spectrum appears. We see a transition
from the spin singlet state (N, S,M) = (2, 0, 0), in which two anti-parallel spin electrons
occupy the 1s orbital, to the spin triplet state (N, S,M) = (2, 1, 1), in which two same-spin
electrons occupy 1s and 2p orbitals, at B = BS−T ∼ 5 T. Similarly, (N, S,M) can be identified
for higher N .

For transient current spectroscopy, a small forward dc bias voltage Vb = 0.15 mV is
applied. A square pulse is applied as schematically shown in figure 11(a). Since the QD
is fabricated on a conducting GaAs substrate, the parasitic capacitance of the gate electrode
(mainly from the bonding pad) degrades the rise time of the pulse to 1–3 ns. This is comparable
to the transport timescale (�−1

tot ≡ (�b + �t)
−1 ∼ 3 ns) of the dot, and thus the amplitude of

the transient current is small. However, we still see a clear transient current signal. In the
following experiment, the pulse length (th = tl = 300 ns) is chosen to be much longer than
the typical electron–phonon scattering time ∼10 ns, and is comparable to �−1

t , but is smaller
than the spin relaxation time (>100 µs), so a transient current appears only for long-lived
ESs whose total spin is different from those of all lower-lying states. The B dependence of
the transient current spectrum is shown in figure 12(b). The lower and upper edges of each
stripe are parallel due to the stable transport through the N-electron GS. The transient current
through the ESs appears inside each stripe. The singlet–triplet transition for N = 2 is clearly
seen at B = BS−T (indicated by an arrow for the second stripe). Transient current is observed
for the triplet ES when B < BS−T, and for the singlet ES when B > BS−T, since relaxation in
both cases requires a spin flip.

From the third stripe in the dc spectrum (figure 12(a)), we can see some ESs whose total
spin is same as that of the GS. The ES (N, S,M) = (3, 1

2 ,−1) appearing in the dc spectrum
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Figure 12. (a) Greyscale plots (white for zero, and grey for high) of |dI/dVg | for reverse bias
(Vb = −1.5 mV) in a dc transport measurement. (In colour in the electronic journal, blue for
negative, white for zero, red for positive.) (b) A greyscale (colour) plot of the pulse excited current
I . (c) Traces of GS and ESs extracted from (a) and (b).

between 0 and 1 T can relax immediately to the GS (3, 1
2 , 1) without a spin flip. Note that

this ES is missing in the transient current spectrum of figure 12(b). Similarly, the ES (3, 1
2 , 1)

near 5 T, where it relaxes to the GS (3, 1
2 , 2) without a spin flip, is also missing in the transient

current. We do not see any transient current (<50 fA) for these short-lived states even when
the pulse length is reduced to th = tl = 20 ns. The absence of the transient signal implies that
the momentum relaxation time is shorter than ∼10 ns.

One can see additional differences between the dc and pulse current spectra. The dc
spectrum has many extra weak features, which do not show any clear B dependence. These
fluctuations probably originate from weak modulation of the density of states in the top
electrode, since its volume is relatively small (∼(0.5 µm)3) [5, 7]. These features are
suppressed in the transient current spectrum, since transport is allowed only when an ES
is located in the narrow transport window. However, we see weak modulation in the amplitude
of the transient current, although this is not clear from the scale used in figure 12(b).
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4. Momentum relaxation process

In this section, we investigate the momentum relaxation process in the N = 1 vertical QD,
which is the simplest case to study. This QD can be regarded as an artificial hydrogen atom,
since it has just one electron in the system. The electron occupies the 1s orbital (the GS)
or the 2p orbital (the first ES). We consider the simplest process of relaxation from the 2p
state to the 1s state. This transition changes the electron’s orbital angular momentum but
preserves the spin, as shown schematically in figure 13(a) [26]. The 2p state in a circular
disc QD has twofold degeneracy, which complicates the analysis. Thus a slightly non-circular
(approximately elliptic) QD is helpful for lifting the orbital degeneracy of the 2p single-particle
states. This non-circularity occurs in practice in all circular QD mesas [27]. Nonetheless, we
still use 1s, 2p, . . . to label the orbitals for convenience. This non-circularity does not affect
our discussion or the underlying physics much. The following experiments were carried out
at a temperature, T , of ∼100 mK, unless otherwise stated.

The energy spectrum of these states is obtained by dc transport spectroscopy as shown by
the plots of d Isd/dVg in a magnetic field in figure 13(c). The energy spacing between the 1s and
2p states, ε1s−2p, for the N = 1 QD deduced from the first current stripe is plotted in figure 14(a).
The bare lateral confinement of our QD can be approximated by two orthogonal harmonic
potentials in the x–y plane [28]. The characteristic confinement energies, h̄ωx ∼ 2.5 meV
and h̄ωy ∼ 5.5 meV, are obtained by fitting ε1s−2p (see the solid curve). The corresponding
characteristic size of the QD in the x/y direction is given by

lx/y = √
h̄/m∗(ω2

x/y + ω2
c/4)

−1/4, (15)

where m∗ is the effective mass and h̄ωc is the cyclotron energy. The variation of the
characteristic size, lx/y , in the magnetic field is shown in figure 14(b). The Zeeman splitting of
the electron spin is small (EZ ∼ 0.1 meV at B = 5 T), and is unresolved in our experiments.

The single-rectangular-pulse technique is used to measure the momentum relaxation time.
Figure 15 shows the typical transient current converted into 〈nfor〉 in forward bias obtained for
various magnetic fields, B . 〈nfor〉 can be fitted well with equation (10) (see the solid curves),
and the small saturation value of 〈nfor〉 ∼ 0.02 � 1 indicates very efficient relaxation. The
saturation value of 〈nfor〉, which varies from 5 × 10−3 to 5 × 10−2, does not always change
systematically with B , probably because the rise time of the pulse is comparable to �−1

L , and
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Figure 14. (a) The energy spacing, ε1s−2p, between 1s and 2p states in the N = 1 QD. (b) The size
of the QD (a, lx , and ly ) and the phonon wavelength, λ1s−2p, corresponding to the energy spacing.
(c) The decay time of the transient current for forward bias (solid circles) and reverse bias (open
circles), and energy relaxation times calculated from the piezoelectric potential (dotted curve), or
the deformation potential (dashed curve), and both potentials (solid curve).

this fluctuates with B in this sample. However, the decay time, τfor , decreases systematically
with increasing B , as indicated by the solid circles in figure 14(c), although there is a scatter by
a factor of 2 to 3. For reference, we also measured the transient current in the reverse bias. The
decay time, τrev, is plotted as open circles in figure 14(c). As explained in section 2.2, the decay
rate for reverse bias should give the total tunnelling rate. We see that τrev ∼ �−1

tot increases
slightly with B . This dependence is consistent with the B dependence of the conventional dc
tunnelling current amplitude. For B < 4 T (τrev < τfor), equation (11) is satisfied, and τfor

gives the time W−1 for relaxation from the ES to the GS. The momentum relaxation time is
3–10 ns, and decreases with increasing B .

Now we discuss the relaxation mechanism. For an energy spacing in the millielectronvolt
region, and at low temperature (thermal energy: ∼10 µeV � ε1s−2p), spontaneous emission
of a phonon, rather than a photon, dominates the relaxation process [22]. The energy spacing
coincides with the acoustic phonon energy in the linear dispersion regime. Because of the
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Figure 15. The average number of tunnelling electrons during one pulse, 〈nfor〉, in the forward
bias condition for different magnetic fields.

discrete energy states, the relaxation involves an emission of a phonon whose energy is identical
to ε1s−2p. The corresponding phonon wavelength is given by λ1s−2p = hvphonon/ε1s−2p, where
vphonon = 5100 m s−1 is the phonon velocity in GaAs. λ1s−2p, which is plotted as a function of
B in figure 14(b), is comparable to or even smaller than the size of the QD. Theoretically,
the strength of the electron–phonon interaction is expected to be suppressed for phonon
wavelengths smaller than the characteristic size of the QD [20]. Actually, the observed B
dependence of the relaxation time can be understood since phonon emission is suppressed
when λ1s−2p becomes smaller than the dot size.

This suppression has been discussed in the context of inefficient optical transitions (the
phonon bottleneck effect) [29–31]. However, most optical characteristics do not agree with
this theory, probably because of interactions with the optical phonon, or because of the Auger
mechanism [32]. Our experiments on a simple one-electron QD qualitatively indicate the
signature of the phonon bottleneck effect, and reveal intrinsic phonon emission characteristics
for moderate acoustic phonon energies.

In order to be more quantitative, we calculate the phonon emission rate from Fermi’s
golden rule:

We−p = 2π

h̄
|〈ψ1s|He−p|ψ2p〉|2ρphononδ(ε1s−2p − h̄ω), (16)

where ρphonon is the phonon density of states, and h̄ω is the phonon energy. The 1s
and 2p wavefunctions in the QD, ψ1s and ψ2p respectively, are approximated by the
wavefunction of a circular QD disc with the effective confinement energy of h̄ωeff =
h̄
√
ωxωy(1 + ω2

c/(ωx + ωy)2). This assumption may be reasonable, because Coulomb
interactions in an elliptic QD just scale with h̄ωeff [28]. We consider both deformation and
piezoelectric types of coupling for the electron–phonon interaction Hamiltonian:

Hdef =
(

h̄

2ρGaAsω

)1/2

k Edef exp(−ikr), (17)

Hpiezo =
(

h̄

2ρGaAsω

)1/2 eEp

ε∗ exp(−ikr), (18)

where ρGaAs is the material density, k = h̄ω/vphonon is the phonon wavevector, Edef = 8.6 eV
is the deformation potential, and Ep = 0.16 C m−2 is the piezoelectric constant [20, 33, 34].
Note that the ratio of the phonon emission rate for piezoelectric-type coupling, Wpiezo, to that
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for deformation-type coupling, Wdef , is given by

Wpiezo

Wdef
=

(
eEp

ε∗k Edef

)2

, (19)

indicating that the piezoelectric effect is dominant for a phonon energy smaller than ∼0.6 meV.
The calculated relaxation times without any fitting parameter are plotted in figure 14(c). In

the region of interest to us, the deformation potential coupling provides the main contribution,
and the total phonon emission rate (solid curve) agrees well with experiment. The difference
by about a factor of 2 or 3 might come from the assumptions about the confinement potential,
and uncertainty in the material parameters. Thus, the fast energy relaxation in the N = 1 QD
(artificial hydrogen atom) can clearly be understood on the basis of spontaneous emission of
a phonon.

It should be noted that no clear selection rule for orbital momentum is expected for QDs.
If the confinement potential is a perfect 2D symmetric harmonic potential, the selection rule
for the dipole approximation, in which the phonon wavelength is much longer than the dot
size, is that the difference in angular momentum quantum number is one. All orbital states
(n, l), where n and l are the radial and angular momentum quantum numbers, can relax to
(n, l − 1) by phonon emission, and eventually cascade down to the lowest (n, 0) state. (n, 0)
states, 3s state for example, may be quasi-stable state in this approximation. However, the
confinement potential of practical QDs is not completely symmetric and parabolic, and the
dipole approximation cannot be applied. Therefore, a clear selection rule for phonon emission
is not expected.

5. Spin relaxation processes

Compared with that for the N = 1 QD, the relaxation time is remarkably different for a
N = 2 QD, which can be considered as an artificial helium atom. At low magnetic fields, the
many-body GS is a spin singlet (labelled S), while the first ES is a spin triplet (labelled T) [4].
Figure 13(b) shows schematically the electron configurations of these states. Because of
direct and exchange Coulomb interactions, the energy spacing between the two states, εS−T

(∼0.6 meV at B = 0 T), is smaller than the energy spacing ε1s−2p for the N = 1 QD. The
energy relaxation from the first ES (T) to the GS (S) for the N = 2 QD not only involves the
same change in orbital angular momentum as that in the N = 1 QD, but also requires a spin
flip because of Pauli exclusion. A simple phonon emission transition from the spin triplet to
the spin singlet is forbidden by spin conservation.

We measure how long this inelastic spin relaxation takes. The simple rectangular pulse
technique employed for the N = 1 QD is not useful for this N = 2 QD transition, because
the relaxation lifetime, τS−T, is always beyond the measurable range (τS−T > �−1

d ∼ 100 ns).
Instead, we subject the QD to a double-step voltage pulse as introduced in section 2.3 [26].
In this case, the time dependent gate voltage Vg(t) is switched between three voltages, Vl,
Vh, and Vm, whilst the dc gate voltage is swept and the pulse height is kept constant. Each
of the original SET peaks is split into three peaks, each corresponding to the three voltage
states. When the pulse height exceeds a value corresponding to the energy spacing εS−T,
two transient current peaks, em and eh in figure 16, appear. Peak eh (em) corresponds to the
transient current in the high- (medium-) voltage state, and peak em is of particular interest. We
evaluate the average number of tunnelling electrons, 〈nt〉 = Ip(tl + th + tm)/e, from the current
Ip at peak em. This measures the average number of tunnelling electrons from the unrelaxed
state, 〈nt〉 = A exp(−th/τS−T), from which we can evaluate τS−T. Since the relaxation time is
very long, the current amplitude becomes very low, ∼1 fA, at the longest th of 100 µs in our
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Figure 17. The average number of tunnelling electrons during a pulse, 〈nt〉, for the triplet ES in
the N = 2 QD.

experiment. In order to obtain a reliable current, the signal is integrated and averaged for about
one hour to average out the noise of our current meter (∼20 fA Hz−1/2). Figure 17 shows a
typical measurement of 〈nt〉 at B = 0 T, indicating a relaxation time of τS−T ∼ 200 µs. This
relaxation time is 4 to 5 orders of magnitude longer than that observed for the N = 1 QD.

5.1. Thermal excitation

First, we study thermal effects, which always enhance inelastic processes. Figure 18 shows
the typical temperature dependence measured at B = 0 T. The relaxation time is insensitive
to T up to ∼0.5 K, and decreases rapidly on increasing T further. Above 1.5 K, CB peaks
are so broadened that we cannot safely distinguish the transient current from the stable SET
current. This behaviour can be understood on the basis of thermal excitation from the triplet
state to the electrodes, which then allows another electron with opposite spin to enter the QD
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Figure 18. (a) The temperature dependence of the inelastic spin relaxation. (b) A schematic energy
diagram for the thermal excitation.

and form the N = 2 singlet GS. This sequential tunnelling process effectively exchanges spin
with the leads. Considering the Fermi–Dirac distribution, the thermally activated relaxation
time is given by

τ−1
th ∼ 1

1 + A
�tot/(exp(�1/kBT ) + 1), (20)

where �1 is the energy of excitation from the triplet to the electrode. �1 and τ−1
th depend on

the gate voltage, and τth can become short for�1 ∼ kBT .

5.2. Inelastic cotunnelling effect

We find that τS−T depends on the high voltage of the pulse, Vh, during which relaxation takes
place, as shown in figure 19(a). Although Vh is swept deep into the N = 2 CB region (see
figure 19(b)), τS−T decreases rapidly at Vh ∼ −1.18 V. This Vh dependence implies a strong
influence of the electrodes. However, this dependence cannot be explained by the thermal
excitation, since it would show a very strong Vh dependence at this temperature (indicated by
dashed lines).

Even though CB is robust in the suppression of transport, higher-order tunnelling
processes can contribute to the relaxation and alter τS−T. An electron in the dot can be
exchanged with an electron of opposite spin from the electrodes. This can result in energy loss
in the QD, and the electrode will gain the same energy. This inelastic cotunnelling rate, τ−1

co ,
is estimated by considering second-order tunnelling processes [35–37]. The cotunnelling rate
can be written as

�
α→β

T→S = 2π

h̄

∑
k,k′

|T α→β

T→S |2δ(εS−T + Eα,k − Eβ,k′ ) f (Eα,k − µα)[1 − f (Eα,k − µα)], (21)

in which an electron with momentum k in lead α is scattered to a state with momentum k ′ in
the lead β during the process of inelastic spin relaxation from the triplet (T) to the singlet (S).
For the relaxation mechanisms considered here, the N = 2 QD can relax virtually through
N = 1 or 3 intermediate states. T α→β

T→S is the scattering matrix which describes these transition
processes, and can be written as

T α→β

T→S = V ∗
β Vα(�

−1
1 +�−1

3 ), (22)
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where Vα and Vβ are transmission amplitudes of the corresponding barrier. �1 and�3 are the
excitation energies from the triplet state to N = 1 and 3 GS, respectively. We sum up all the
contributions from both electrodes (α, β ∈ {L,R}):

τ−1
cot = �L→L

T→S + �L→R
T→S + �R→L

T→S + �R→R
T→S , (23)

and this can be simplified by assuming zero bias voltage (µL = µR) and zero temperature:

τ−1
cot = εS−T(h̄�tot)

2(�−1
1 +�−1

3 )2/h, (24)

where �tot = �L + �R is the total tunnelling rate. Note that this process does not cause a net
current even at a finite voltage of e|Vsd| < εS−T [38].

Figure 19(b) shows the total energy of the N = 1, 2, and 3 QD, involving the N = 2 ES.
We can define�1 and�3 (=Ea−2εS−T−�1) from this figure, and�1 and�3 are also indicated
in figure 19(a). The solid line in figure 19(a) shows τco, calculated from equation (24) with
experimentally deduced parameters (εS−T = 0.6 meV, and �−1

tot = 7 ns) but without any
fitting parameter. Clearly the observed relaxation time can be well understood on the basis of
an inelastic cotunnelling process. The maximum observed relaxation time of about 200 µs is
determined by the cotunnelling process. Here, in order to account for the decreasing relaxation
time on the more positive Vh side, we use �−1

tot = 7 ns which is obtained for the total incoming
tunnelling transition from the N = 2 triplet state to N = 3 GS. However, we do not see a clear
decrease of the relaxation time on the more negative Vh side, even through the corresponding
tunnelling rate is faster. The rate of �−1

tot = 3 ns is obtained for the total outgoing tunnelling
transition from the N = 2 triplet state to N = 1 GS. This discrepancy is not yet well understood.

We find no clear B dependence of τS−T (always longer than 100µs), at least for the energy
spacing between 0.6 meV at B = 0 T and 0.24 meV at B = 2 T (figure 20). The cotunnelling
rate given by equation (24) suggests a magnetic field dependence determined by εS−T, �tot ,
and �1/3. For the magnetic field region from 0 to 2 T, εS−T decreases by about half, and �tot

may also decrease by about half, while�1/3 does not change very much. So τ−1
cot can increase
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by a factor of ∼8, which is within the error bar of our experiment. More detailed experiments
will clarify this dependence.

5.3. Spin–orbit interactions

It should be noted that the cotunnelling process can be easily reduced by using even
thicker tunnelling barriers. Then we would expect a much longer relaxation time, which
would be dominated by intrinsic processes. Very importantly, the large difference between
τ1s−2p and τS−T originates from the fact that other effects, such as spin–orbit and hyperfine
interactions [10, 21], must have only a weak effect on the breaking of the ‘forbidden’
symmetries. We now discuss how small these hidden contributions are by focusing on the
spin–orbit interactions.

Spin–orbit interactions are predicted to give the dominant contribution to spin relaxation in
GaAs QD systems [21], although this is still an extremely small effect. Spin–orbit interaction
can originate from the absence of crystal inversion symmetry, confinement potential, and
interface or surface effects. For simplicity, we consider the spin–orbit interaction energy:

�so = |〈ψ1s,↑/↓|Hso|ψ2p,↓/↑〉|, (25)

only for coupling between the 1s and 2p orbitals of opposite spin. We do not discuss the
microscopic origin of the interaction Hamiltonian, Hso, in detail. This interaction mixes the
spin up and down electron wavefunctions, which can be written as

ψ̃1s,↑/↓ = ψ1s,↑/↓ − �so

ε1s−2p
ψ2p,↓/↑,

ψ̃2p,↑/↓ = ψ2p,↑/↓ +
�so

ε1s−2p
ψ1s,↓/↑.

(26)
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Here ψ1s,↑/↓ (ψ2p,↑/↓) is the unperturbed wavefunction of a spin up/down electron in the 1s
(2p) orbital. The two-electron wavefunction for N = 2 QD can be approximated by the Slater
determinant of the one-electron 1s and 2p wavefunctions, and the N = 2 spin singlet and
triplet states in the presence of the spin–orbit interaction can be written as

ψ̃S = ψS − �so

εS−T
ψT,1 − �so

εS−T
ψT,−1,

ψ̃T,±1 = ψT,±1 +
�so

εS−T
ψS.

(27)

We consider the electron–phonon interaction for the transition between these states, and the
corresponding transition rate can be written as

Wso = 2π

h̄

(
�so

εS−T

)2

|〈ψ2p|He−p|ψ2p〉|2ρphonon(εS−T), (28)

which is obtained by substituting equation (27) for (16). For a parabolic confinement potential,
the matrix element can be approximated by

|〈ψ2p|He−p|ψ2p〉| ≈ |〈ψ1s|He−p|ψ2p〉|, (29)

and the spin–orbit relaxation rate is simplified to

Wso =
(
�so

εS−T

)2

We−p(εS−T), (30)

where We−p(εS−T) is the phonon emission rate at the transition energy εS−T. We know that
the momentum relaxation time can be well accounted for by the phonon emission process as
discussed in section 4.

For our QD at B = 0 T, we speculate that W−1
e−p(εS−T = 0.6 meV) = 0.5–3 ns, in which

piezoelectric and deformation coupling contribute to the relaxation almost equally. Since the
spin–orbit relaxation time should be longer than the observed cotunnelling relaxation time of
200 µs, we can deduce an upper bound of �so < 4 µeV. This value of �so is close to the
spin–orbit induced spin splitting energy (∼2.5 µeV) observed in a GaAs two-dimensional
electron gas system [39]. Spin–orbit interactions are significantly enhanced in nanoparticles,
e.g. copper, probably because of impurities or interfaces [40], but our vertical semiconductor
QDs are largely free of these undesirable factors.

Our experiments indicate that the spin degree of freedom in QDs is well isolated from
the orbital degree of freedom. This is particularly attractive for applications to spin memories
and spin qubits [41]. For a simple scheme involving just a single-electron spin in a magnetic
field, spin–orbit interactions can degrade the energy relaxation time (T1) of a spin qubit. We
estimate this contribution, T1,so, using a perturbative approach:

T −1
1,so ∼

(
�so

εZ

)2

We−p(εZ)

from equations (16) and (26). Since �so < 4 µeV, this yields T1,so > 1 ms for a Zeeman
splitting εZ ∼ 0.1 meV and ε1s−2p ∼ 1.2 meV at B ∼ 5 T (T1,so > 100µs at B ∼ 9 T). Recent
measurements [42] concerning the process of energy relaxation between Zeeman sublevels in
N = 1 QD indicates that T1 � 50 µs, which supports our estimation. Note that the estimated
T1,so is comparable to that obtained by electron spin resonance for donor states in GaAs [43],
and is much longer than the time required for typical one- and two-qubit operations [44].
Small spin–orbit interactions are also desirable with respect to the dephasing time (T2) of a
spin qubit [45]. Our results are therefore encouraging for further research in the use of the
spin degree of freedom in QDs.
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Table 1. Comparison of processes of relaxation from the first ES (neglecting Zeeman sublevels)
to the GS in artificial atoms and real atoms. The atomic species, the transition process in the atomic
representation, the mechanism for the allowed or forbidden transition, and the relaxation time with
the relaxation energy are shown for each item.

Artificial atoms (QDs) Real atoms

One-electron N = 1 QD Hydrogen (H) Potassium (K)
system 2p–1s 2p–1s (Lyman α) 4p–4s

Allowed for phonon emission Allowed for photon emission Allowed for photon emission
τ = 3–10 ns (hν ∼ 2 meV) τ = 1.6 ns (hν = 10.2 eV) τ = 2.6 ns (hν = 1.61 eV)

Two-electron N = 2 QD Helium (He) Calcium (Ca)
system (1s)(2p) 3P–(1s)2 1S (1s)(2s) 3S–(1s)2 1S (4s)(4p) 3P–(4s)2 1S

Forbidden by spin Forbidden by spin and parity Forbidden by spin
τ ∼ 200 µs (hν ∼ 0.5 meV) τ = 7860 s (hν = 19.8 eV) τ = 385 µs (hν = 1.89 eV)

τforbidden/τallowed >3 × 104 4.5 × 1012 1.5 × 105

5.4. Comparison with real atoms

Our observations for N = 1 and 2 QDs (artificial atoms) can be compared with those for real
atoms [46] (see table 1). The transition from the 2p state to the 1s state in atomic hydrogen
is allowed by photon emission (the Lyman α transition line), while that in artificial hydrogen
is allowed by phonon emission. The transition time of 1.6 ns at the photon energy of 10.2 eV
for atomic hydrogen happens to be of the same order of magnitude as the relaxation time
of 3–10 ns at the phonon energy of 1–3 meV for the artificial hydrogen atom, although the
mechanisms and energy quanta are quite different.

The transition from the spin triplet state to the spin singlet state is forbidden by conservation
of total spin for artificial helium. The corresponding relaxation time for atomic helium from
(1s)(2s) 3S to (1s)2 1S is extremely long (7860 s), because it is doubly forbidden by spin and
momentum selection rules (the electric dipole transition from 2s to 1s is also forbidden). The
difference between the allowed and forbidden transitions leads to a difference of more than 12
orders of magnitude between the relaxation times for real hydrogen and helium atoms. Our
observation of a difference of 4 to 5 orders of magnitude for our N = 1 and 2 artificial atoms is
not as high, but is comparable to that for atomic K and Ca, which are located in the same row
in the periodic table as the host atoms of Ga and As in our QD. This implies that the quality of
our QD is high.

6. Non-equilibrium transport

In this section, we discuss highly non-equilibrium transport characteristics, which arise as a
result of the long inelastic spin relaxation time. We have shown in the previous section that
the spin-flip energy relaxation time in QDs can be extremely long (�200 µs). This is much
longer than the typical interval for tunnelling events (�−1 = 1–100 ns for a typical tunnelling
current of e� ∼ 1–100 pA, where � is the tunnelling rate), while the momentum relaxation
time, τmo ∼ 10 ns is much shorter. Therefore, no internal transition that changes the total spin
of the QD occurs within the typical transport timescale.

There is another important selection rule in transport. Since a single electron has spin 1/2,
a SET transition must change the total spin by 1/2, and other tunnelling transitions should be
forbidden. The spin blockade effect has been discussed for the suppression of the conductance
or the appearance of negative differential conductance [47, 48]. However, most experimental
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arrows indicate allowed tunnelling transitions, while other transitions are forbidden.

interpretations for the weak suppression of the conductance seem to contradict the simple
expectation of a complete suppression of the current.

We investigate these spin selection rules (spin conservation and the spin blockade effect)
in the transport characteristics of a few-electron vertical QD. All the transport processes can be
well understood on the basis of these spin selection rules. However, we find that the number
of electrons, the total spin, and the total energy of the QD can fluctuate significantly due to
non-equilibrium transport [49, 50].

6.1. Reconsideration of orthodox Coulomb blockade theory

Figure 21 shows the allowed and forbidden tunnelling transitions between different (N, S)
states in a few-electron QD consistent with the two kinds of spin selection rule. For example,
the internal transition between (N, S) = (2, 0) and (2, 1) (dotted arrow) is forbidden by spin
conservation. The tunnelling transition between (N, S) = (2, 0) and (3, 3/2) (dashed arrow)
is forbidden by spin blockade. These spin selection rules restrict the possible transitions in a
QD, and give rise to complicated excitation processes that cannot be explained by orthodox
CB theory.

The orthodox CB theory accounting for the CB effect and SET was originally introduced
for transport through a small conductive island with a continuum of density of states. This
theory is widely accepted for a variety of systems involving semiconductors, normal and
superconducting metals, and molecules, some of which have spin dependent discrete energy
states [13]. The total energy, U(N), of the system, in which an island containing N electrons
is electrostatically affected by a gate voltage, Vg, via a capacitance, Cg, is given by

U(N) = (−Ne + CgVg + q0)
2

2C∑ + Eint(N, S,M). (31)

The first term is the electrostatic energy approximated by a constant Coulomb interaction.
Enclosed in the parentheses is the sum of the electron charge on the dot, the charge induced
by the gate, and an offset charge, q0. C∑ is the total capacitance of the dot. The second
term, Eint(N, S,M), is the sum of the energies of the occupied N-electron levels with total
spin S and total angular momentum M accounting for the internal degrees of freedom of the
QD. Other corrections to the many-body interactions are also included in Eint(N, S,M). In
the orthodox theory, the second term is neglected because the QD is assumed to relax quickly
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to the minimum energy, E (min)
int , which is almost independent of N . In this SET scheme, an

electron that has entered the island leaves before another electron is allowed to enter when
U(N0) = U(N0 +1) as shown in figure 22(a). This situation is maintained unless the excitation
energy exceeds the charging energy, Ec = e2/C∑. In this picture, long-lived spin states are
neglected and only N-electron GSs only considered.

For a QD, in which energy quantization and many-body interactions are significant, we
must consider the discrete energy of the dot, Eint(N, S,M). We focus on the regime where
spin-flip energy relaxation is effectively absent. Since the momentum relaxation is effective,
the QD can still easily relax to the minimum energy Eint(N, S). However, if the QD is
excited to any N-electron state with a total spin different from that of the N-electron GS,
the ES cannot always relax to the GS before the QD undergoes a tunnelling transition to
another (N ± 1)-electron state. Successive tunnelling transitions force the QD into highly
non-equilibrium configurations. Figure 22(b) shows a particular U(N, S) diagram, which can
actually be realized in our QD (discussed below). Long-lived ESs are now included, and
the different spin states have different energies because of the Coulomb interactions. The
allowed tunnelling transitions indicated by the arrows require excitation energies smaller than
the addition energy, Ea. Here now, Ec is replaced with Ea, which includes the N dependent
E (min)

int . All of these transitions can cause the dot state (N , S, and U ) to fluctuate dramatically.

6.2. Transient current spectroscopy

To investigate the highly non-equilibrium transport, we employ the pulse excitation technique
on a circular QD mesa introduced in section 3.2. One can only study the transient current
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associated with long-lived spin states whose total spin is different from those of any lower-
lying states. Therefore, only the lowest-energy state for a given N and S can be observed using
the pulse excited current, and other short-lived states can be neglected.

Figure 23 shows the pulse excited current spectra for N = 0–6 at B = 2.4–3.6 T. For each
B , a current peak initially observed in the absence of the pulse (Vp ∼ 0) and representing a SET
transition between N- and (N + 1)-electron GSs splits into two main peaks of equal height
(truncated in the grey (colour) scale), when the pulse is applied. Weaker additional peaks,
indicated by the arrows, are due to transient current through long-lived ESs. Rich structure
is observed in the current spectra between 2 and 4 T since various many-body spin states are
energetically close to each other [51]. The representative spectra in figure 23 are observed in
the B range where the GS of the N-electron QD is not spin polarized, i.e., the smaller-S states
have lower energy.

There are some general features observed in the spectra. Firstly, when the peak positions
are extrapolated to lower Vp, pairs of peaks (e.g. the two labelled a and a′) generally meet
at Vp = 0 exactly (see also the dashed line for pairs a–a′ and b–b′). This behaviour can be
seen for all peaks over the entire magnetic field range (0–6 T) investigated. The peaks in
figure 23 are labelled in such a way that the prime (non-prime) labelled peaks are associated
with tunnelling transitions in the low- (high-) voltage state of the pulse. Secondly, some of the
current peaks are terminated by other current peaks (e.g. peak d is terminated by peak b′, and
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peak d′ by peak e), as discussed below. Thirdly, the number of peaks is more than that expected
for a simple SET scheme. For example, as shown in figure 21, there are only two allowed
tunnelling transitions between long-lived states in N = 1 and 2 QD. However, in total three
peaks (a and b in addition to the original SET peak) are seen in the conducting region between
the N = 1 and 2 CB regions. Peak b cannot be explained by a higher-lying short-lived ES of
the N = 2 QD; it can only be explained by considering non-equilibrium tunnelling processes.

6.3. Breakdown of the single-electron tunnelling scheme

All the transport spectra in figure 23 can be well understood from the total energy diagrams
in figure 24. Figure 24(a) is the U(N, S) diagram when the gate voltage is set to position α
at B = 3.0 T in figure 23. SET between (N, S) = (1, 1/2) and (2, 0) is always possible even
at zero excitation energy. The single-particle excitation to (2, 1), corresponding to peak a in
figure 23, becomes possible when the excitation energy exceeds the level spacing, ε2. Since
the energy relaxation from (2, 1) to (2, 0) is forbidden due to spin conservation, the (2, 1)
state is stable until another tunnelling transition takes place. Then, the QD can be excited to
charge state (3, 1/2), as indicated by the double-line arrow in figure 24(a). This excitation
requires the energy Ea − ε2, which is considerably smaller than the addition energy Ea. Since
the excitation to (3, 1/2) involves three charge states, N = 1, 2, and 3, this tunnelling process
can be thought of as a novel double-electron tunnelling (DET) mechanism. The corresponding
current peak is labelled b in figure 23. At gate voltage α, this novel DET process would require
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Vp ≈ 200 mV, which is outside the range of figure 23. However, it is clear that peak b appears
inside the region where SET is expected from orthodox theory.

In order to fully describe the tunnelling transition during pulses, U(N, S) is plotted against
Vg in figure 25(a). The normal SET tunnelling (GS–GS tunnelling) current peaks occur at level
crossings labelled ◦, whilst transient current appearing at higher-energy level crossings are
denoted with different symbols. Suppose a Vg pulse is applied as shown. The state is initially
(1, 1

2 ) in the low-voltage state of the pulse (Vg = Vl). U(1, 1
2 ) is raised to a higher energy

(arrow i) when the high voltage is applied (Vg = Vh), and subsequent inelastic tunnelling
results in either the (2, 0) or the (2, 1) state. If it is (2, 1) (arrow ii), it is now possible for
another electron to be transported at the crossing U(2, 1) = U(3, 1

2 ) marked by �. In this
case transient transport persists until the inelastic tunnelling transition from (3, 1

2 ) to (2, 0)
occurs, because spin-flip energy relaxation from (2, 1) to (2, 0) is absent. The QD returns
back to the initial state (1, 1

2 ) when the pulse is switched to Vl. This new tunnelling process
involves three charge states, so this is why we refer to it as DET. Conventional DET, within
the orthodox CB theory, appears only for κVp � Ea [13, 24], while the novel DET here takes
place even for κVp < Ea. Here κ is the conversion factor when changing from gate voltage
to energy. This novel DET process should appear on the thick line b in the κVp–Vg plane of
figure 25(b). The novel DET is clearly seen in the experimental data of figure 25(c) as indicated
by line b. We emphasize that this peak cannot be due to regular SET involving higher-lying
N = 2 ESs. The pulse measurement successfully allows us to identify the extra peak b as a
novel DET feature.

Transient current can also appear in the low-voltage state of the pulse. If a pulse is
applied to excite the QD along (3, 1

2 ) in the direction of more negative Vg (the dashed arrow in
figure 25(a)), GS–ES tunnelling between (3, 1

2 ) and (2, 1) should appear along the line b′ in
figure 25(b). Similarly, novel DET appears at the crossing U(2, 1) = U(1, 1

2 ) (corresponding
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Figure 26. (a) The gate voltage dependence of the pulse excited current peaks. Solid curves
are guides to the eye. (b) The electrochemical potential, µS,M, calculated by means of exact
diagonalization for tunnelling transitions to (N = 3, S,M) states.

to feature a′). Note that the extrapolated lines a and a′ (b and b′) meet at zero excitation energy.
These features are clearly seen in figure 25(c) as well as over the whole B range in figure 23.

6.4. The spin blockade effect and related non-equilibrium transport

We now discuss spin blockade and associated non-equilibrium transport. The tunnelling
transition between N = 2 and 3 is the first case where spin blockade appears. Figure 24(b)
shows the U(N, S)diagram when the gate voltage is adjusted toβ at B = 3.6 T in figure 23. The
SET between the N = 2 and 3 GSs, single-particle excitation to (N, S) = (2, 1) (transition
b′ in figure 24(b) and the corresponding peak b′ in figure 23), and novel double-electron
tunnelling into (1, 1/2) (labelled by a′) are clearly seen. The extra peak c, although it is faint
in figure 23, is attributed to the transition from (2, 1) to (3, 3/2). We call this tunnelling process
ES–ES tunnelling, because it is between the N = 2 ES and 3 ES with no GSs involved. This
highly non-equilibrium transport process is possible because the spin-flip energy relaxation
from (2, 1) to (2, 0) is forbidden. Since this ES–ES excitation requires a ‘pre-excitation’ from
(3, 1/2) to (2, 1) (labelled b′), transition c only appears when transition b′ is possible. So the
corresponding current peak, c in figure 23, is terminated by peak b′. Similar ‘terminations’,
such as peak d terminated by peak b′, peak c′ by peak e, and peak d′ by peak e, are clearly seen
in figure 23. They are all attributed to ES–ES tunnelling.

It should be noted that the transition from (2, 0) to (3, 3/2) which changes S by 3/2
is not observed because of spin blockade. This is confirmed by close observation of the B
dependence of peak c. In the following, we show that peak c is attributed to ES–ES tunnelling
from (2, 1), and not to the broken spin blockaded transition from (2, 0). Figure 26(a) shows
the B dependence of the peak positions for SET between the N = 2 and 3 GSs (solid circles),
and for one of the pulse excited current peaks (open circles) [52]. The complete current
spectrum is shown in figure 12(b). The peak of interest, c, corresponds to the open circles
for between 3 and 4 T in figure 26(a). The position of the solid circles shows some kinks
that are related to the level crossings of the N = 2 or 3 GSs. From a comparison with an
exact diagonalization calculation shown in figure 26(b), we can identify a transition from a
spin singlet (N, S,M) = (2, 0, 0) to a spin triplet (2, 1, 1) of the N = 2 QD at B = BS−T,
a momentum transition from (3, 1/2, 1) to (3, 1/2, 2) of the N = 3 QD at B = BM, and a
transition from the spin doublet (3, 1/2, 2) to spin quadruplet (3, 3/2, 3) of the N = 3 QD
at B = BD−Q. Each transition field is indicated by an arrow. The long-lived ESs (open
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for dc excitation processes. (c) Corresponding conditions for dc excitation transport.

circles) follow the crossing behaviour with respect to the doublet–quadruplet GS transition
at around B ∼ BD−Q, indicating that the ES peak for B < BD−Q arises from the transition
between (2, 1, 1) and (3, 3/2, 3). This transition is just a GS(N = 2)–ES(N = 3) transition
for BS−T < B < BD−Q. Now suppose we look at the peak position for B < BS−T. If the
current arises from the transition from (2, 0, 0) to (3, 3/2, 3), so violating spin blockade, the
peak position should show a kink at B = BS−T due to the GS level crossing of the N = 2 QD,
and follow the dotted line in figures 26(a) and (b). However, the peak position does not show
any kink at B ∼ BS−T, and follows the dashed line smoothly to lower B . This is expected only
for the ES–ES tunnelling transition between (2, 1, 1) and (3, 3/2, 3). Therefore, this current
peak for B < BS−T ∼ 4 T must be associated with ES–ES tunnelling. Actually, we never see
the spin blockaded transition with our current sensitivity (∼10 fA).

6.5. More complex excitations

Other complex tunnelling processes involving both novel DET and ES–ES tunnelling are also
observed. Peak d (c′) in figure 23, which is terminated by peak b′ (e), is also attributed to
ES–ES tunnelling, whose excitation process involves three charge states. More complicated
excitations are expected for QDs with more electrons. Four different peaks (e, f, c′ and d′ in
figure 23) are observed at B = 3 T between the N = 3 and 4 CB regions. The corresponding
transitions are indicated in the total energy diagram in figure 24(c). The fluctuation in the total
energy can be significantly greater than the pulse excitation energy. Non-equilibrium transport
can lead to the accumulation of energy in excess of the excitation energy. As N increases, many
long-lived ESs with different S can contribute to the transport. The complexity of many-body
excitations is expected to increase with N and S [53].

6.6. Non-equilibrium transport in the dc measurement

Although the above non-equilibrium transport characteristics are deduced from pulse
measurements, we expect to see similar features in conventional dc excitation measurements.
For example, figure 27(a) shows the dc spectrum for between the N = 1 and 2 CB regions at
B = 0 T. In addition to the expected current step marked by arrow a, associated with excitation
to the ES(N, S) = (2, 1), we see an extra current step marked by arrow b that we associate
with the novel DET.

The novel DET involving N = 1, 2, and 3 is allowed in dc measurements when eVb is
greater than |U(1, 1

2 )− U(2, 0)| (the energy required for normal SET between the N = 1 and
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2 GSs; arrow i in figure 27(b)), |U(2, 1)− U(1, 1
2 )| (the excitation energy to the N = 2 spin

triplet ES from the N = 1 GS; arrow ii), and |U(3, 1
2 )− U(2, 1)| (the extra energy for novel

DET; arrow iii). The necessary conditions for the novel DET here are satisfied in the grey (red)
region in the eVb–Vg plane of figure 27(c). The condition in dc measurement for novel DET,
as well as the other tunnelling processes, is equivalent to that in pulse measurements, obtained
by replacing κVp with eVb.

7. Summary

We have described inelastic spin relaxation and related non-equilibrium transport in the CB
regime by means of pulse excited tunnelling current measurements. The electrical pump and
probe techniques used to perform transient current spectroscopy have successfully revealed
the relaxation time and tunnelling rates separately. The relaxation dynamics in lateral and
vertical QDs can be explained well in terms of allowed transitions and forbidden transitions,
in analogy with real atoms.

We believe that our pulse techniques can be extended to observe and to manipulate
coherency of spin and momentum in a QD. Coherent manipulation of charge states in a
superconducting island has been investigated by a similar technique [54]. We expect to perform
similar coherent manipulation in a QD system, in which an electron goes back and forth between
two coupled QDs. Then we can probably investigate decoherence of the system. Since the
decoherence time is always shorter than the energy relaxation time, the decoherence time for
the momentum degree of freedom in a QD cannot exceed the inelastic momentum relaxation
time, which is 3–10 ns in our QD. However, the spin decoherence time is expected to be much
longer. Spin coherency can be measured by electron spin resonance techniques on applying
a microwave magnetic field in the presence of a static magnetic field [55]. By combining
with the pump and probe scheme introduced in this article, initialization, manipulation,
and measurement processes can be separated, and this is desirable for quantum information
technology.
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